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Abstract. Dynamical billiards consist of a particle on a two-dimensional table, bouncing
elastically off a boundary curve. The state of the system is given by two numbers: one
describing the location along the curve where the bounce occurs, and another describing the
incoming angle of the bounce. Successive bounces define a two-dimensional area preserving
map, and iterating this map gives a dynamical system first studied by Birkhoff. One of the
simplest smooth table shapes is that of an ellipse, in which case the dynamics of the billiard
map is completely integrable. The longstanding Birkhoff conjecture is that elliptical tables
are the only smooth convex table for which complete integrability occurs. In this spirit, we
present an implicit real analytic method for iterating billiard maps on perturbed elliptical
tables. This method allows us to compute local stable and unstable manifolds of periodic
orbits using the parameterization method. Globalizing these local manifolds numerically
provides insight into the dynamics of the table.
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1. Introduction

The game of billiards, beloved since the 14th century, inspired the mathematical models
proposed by Birkhoff in the 1920s [Bir27]. Since then, mathematical billiards has served as
an especially rich proving ground for ideas in Hamiltonian systems theory. One of the moti-
vations for Birkhoff’s work was to solidify the foundations of thermodynamics by restricting
attention to a single gas particle. Billiards (especially on polygonal tables) are moreover
related to geodesic flow on surfaces, and have applications in classical mechanics and optics
[BFB+11, BDBT23, DHN03, BK96]. The reader will find more complete discussion of the
history and application of these models, as well as many additional references, in any of the
excellent sources [Gut86, Tab09, CM06, HW13, BFB+11, Bun19, BFG+22, Fra03, Gut12,
LT07, MRRTS16, Mei92].

Mathematical billiards are introduced formally in Section 2.1 but, loosely speaking, the
idea is to consider a massless particle moving without friction across a planar billiard table.
The particle bounces off the table’s boundary in an elastic collision and moves off in a new
direction determined by Snell’s law. If the boundary of the table is a simple closed curve,
it can be parameterized with a single parameter. Since the angle of incidence is of course
described by an angle, these two numbers describe the state of the system at collision. In
between collisions the particle moves in a straight line with constant velocity, allowing one to
reduce the system from a differential equation with impacts to a smooth map on a cylinder.
The reduced system is known as a billiard map. The relation between the flow on the table
and the billiard map is illustrated in Figure 1 for a pair of tables which, while simple, already
suggest that billiard trajectories can be quite complicated.
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Figure 1. Top Left: Orbits on the physical table which is an unperturbed
ellipse with eccentricity 0.4583. Each trajectory has a caustic, i.e. a curve
which is tangent to every line. Top Middle: Phase space orbit corresponding to
the trajectory on the top left. The value of θ indicates the location of bounce,
and r measures the angle of the bounce. Top Right: The full phase space
of orbits are quasiperiodic, colored by their frequency. Bottom Left, Middle:
The trajectories and orbits for the same orbits, but for a small perturbation
of the ellipse (Table A described in (2) and Table 1). Some caustics remain.
However, the red trajectory no longer has a caustic; its corresponding orbit
is chaotic in phase space. Bottom Right: For the full phase space, many
quasiperiodic orbits persist and are colored by frequency, but some orbits are
now chaotic, colored in gray.

Again, because particle trajectories follow straight lines between consecutive collisions, the
dynamics are completely determined by the shape of the table. An important conjecture
in this context is the Birkhoff conjecture, which claims that a billiard system is integrable
if and only if the boundary of the table is an ellipse (this includes the case of the circle).
From the beginning of the study of billiard problems in mathematics, this conjecture has
occupied a central place, and work on the problem continues through the present day. Avila
et al. [ADSK16] for example considered the case of infinitesimally perturbed ellipses, and
Delshams et al. [DRR96, KS18a] proved local versions of the conjecture. In 2023, Baracco
and Bernardi [BB24] proved that a totally integrable strictly-convex symplectic billiard table,
whose boundary has strictly positive curvature, must be an ellipse. For more discussion of
the theory and open problems, see [BFG+22, Sch22].

Since the Birkhoff conjecture concerns integrable billiards, the question is closely re-
lated to the existence of chaotic motions. Chaos in billiards systems was first studied by
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Bunimovich [Bun75, Bun79] in the 1970s, who showed that there exist tables with only
focusing components (focusing trajectories like a lens) admitting chaotic dynamics. An
overview of chaotic billiards is found in [CM06], and more recent work in this area in-
cludes [DHF19, Bun19]. If the Birkhoff conjecture holds, then we expect non-elliptical tables
to admit chaotic motions.

In this paper, we numerically study a basic mechanism for generating chaotic dynamics;
namely the homoclinic tangles first studied by Poincaré [Poi93a, Poi93b, Poi93c] and later
formalized by Smale [Sma65]. These tangles are formed by transverse intersections between
stable/unstable manifolds of hyperbolic fixed points and/or periodic orbits. To reliably locate
these objects for billiard maps, we implement a parameterization method for numerically
computing high order Taylor expansions of the local stable/unstable manifolds, and “grow”
the local manifolds to find the desired intersections. Assuming the billiard table has a real
analytic boundary, the series expansions are guaranteed to converge. Heuristic a-posteriori
indicators provide practical guides to the useful domain for the truncated series. Figure 2, for
example, illustrates stable and unstable manifolds computed for a variety of periodic orbits
on the table of Figure 1. Figures 3 and 4 illustrate stable and unstable manifolds for periodic
orbits of four other perturbations of elliptical tables. These manifolds intersect transversely,
suggesting the existence of chaos in each case. We remark that the parametrization method
is well suited for computer assisted proofs, and a follow-up paper will validate the findings
presented in the present work.

Figure 2. This figure shows the stable and unstable manifolds and their
intersections for periodic orbits with a variety of periods. This data is for the
same perturbed elliptical billiard table as shown in Fig. 1, (Table A in Tbl. 1).
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Figure 3. The figure shows stable and unstable manifolds for periodic orbits
computed for Tables B and C (cf. Tbl. 1), larger perturbations of the same
ellipse as in Figs. 1 and 2. The phase space in the background is colored by
frequency for regular orbits and gray for chaotic orbits.

Figure 4. The figure shows stable and unstable manifolds for periodic orbits
computed for Tables D and E (cf. Tbl. 1). These tables are perturbations
of an ellipse with larger eccentricity. The phase space in the background is
colored by frequency for regular orbits and gray for chaotic orbits.

The computational scheme is iterative, and a key step requires computing the power series
of the billiard map composed with the current polynomial approximation. If the billiard map
were explicitly polynomial, then such compositions could be worked out explicitly via Cauchy
products, resulting in explicit recursion relations power series coefficients. See for example
the worked problems in [GMJ17, FJ20], and also Appendix B of the current work. Non-
polynomial nonlinearities are often dealt with by appending differential equations describing
the nonlinear terms. Several examples of this procedure are given in the first reference just
cited, and the procedure is reviewed in Appendix B. Moreover, formal series techniques for
simple implicitly defined maps are also possible, as illustrated in [TMJ22].
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However, when the implicit map is complicated enough, the techniques of the references
just cited are unwieldy. Examples of such situations include Poincaré maps associated with
differential equations, and also the billiard maps studied in the present work. In such sit-
uations, an alternative is to compute the desired composition (of a power series with the
dynamical map) using methods of interpolation. Moreover, when interpolating analytic func-
tions, the discrete Fourier transform (DFT) is known to provide especially accurate, stable,
and efficient interpolation, especially when combined with the Fast Fourier Transform (FFT)
algorithm. These techniques are also reviewed in Appendix B.

A complication with the DFT approach is that the map must must be evaluated in the
complex plane, and this may involve non-trivial modifications of its numerical implemen-
tation. We refer to the recent works of Kumar [KAdlL25, KAdlL22, KAdlL21], where the
parameterization method is implemented for Poincaré sections in problems from Celestial
Mechanics, and where it is first necessary to extend the numerical integration, and then the
Poincaré section, to complex variables via analytic continuation.

In the present work, we undertake a similar program for billiard maps. That is, to use
the DFT, we first extend the billiard map into a complex domain (in both variables). Since
the map is only implicitly defined, this involves numerical analytic continuation. Note, we
do not claim the complex billiard map has any physical significance: it is simply a numerical
convenience, as the manifolds we compute are real. This said, it is interesting to note that
analytic continuation for billiards has appeared in the theory before, and we refer for example
to the discussion following Remark 9 in the introduction of the paper [KS18b], where the
authors explain that the main idea of their proof is to analyze the singularities in the complex
plane associated with the action angle form of perturbed elliptic billiards. The coordinates
used in the reference just cited are chosen for their theoretical properties, and do not appear
to be easy to work with numerically. The coordinates used in the present work, on the other
hand, are chosen to simplify the resulting numerical calculations. This work builds on results
in the PhD Thesis of the first author [Bis24].

The remainder of the paper is structured as follows: Section 2 introduces the setup, def-
initions, notation, and prior results. Section 3 gives the details of our numerical methods
for iterating the billiard map on any perturbed elliptical table with smooth boundaries that
is convex. In Section 4, we discuss how we compute the stable and unstable manifolds for
periodic orbits. In Section 5, we detail our results, presenting computed stable and unstable
manifolds for periodic orbits on five different billiard tables shown in Figures 9–15. Section 6
contains our conclusions and an outline of future work.

2. Definitions, background, and prior results

This section introduces the definitions and notation along with a review of prior results.

2.1. Dynamical billiards – from physical table to phase space. We focus on connected,
strictly-convex, planar domains with smooth (in fact real analytic) boundaries, as done in
[HW13]. Such a billiard system is given by the following data.

Definition 2.1. A billiard system consists of a point particle confined to move in a connected,
strictly convex, and closed planar domain D ⊂ R2 with boundary curve Γ. We assume that
Γ is a smooth non-self-intersecting curve. In particular, Γ is sufficiently smooth that it can
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be parameterized by a real analytic map B : [0, 1] → R2, where B(0) = B(1), and B′(θ) is a
nonvanishing tangent vector. We assume that B has counter-clockwise orientation on Γ.

The point particle moves within domain D according to the following criteria.

(1) The trajectory curve G(t) ⊂ D for all t ≥ 0. We require G(t) to be a continuous
union of line segments, such that for any time interval for which G is in the interior
of D, v(t) = G′(t) is constant, and |v(t)| = 1.

(2) The trajectory of the particle begins at t = 0 at a point G(0) ∈ Γ on the boundary of
the domain.

(3) Whenever the trajectory G(t) reaches the boundary, it is reflected elastically back into
the interior of D according to the standard Snell’s law of reflection.

Based on the above definition, the particle trajectory is fully determined by the location of
the boundary collisions, along with the direction of vector v after the collision. Let {tk}∞k=0
be a discrete increasing sequence of times at which the particle hits the boundary Γ. Define
θk by G(tk) = B(θk). Let γk be the angle that v(t) makes with the tangent vector B′(θk)
immediately after the bounce, and let

r = cos γ, where − 1 < r < 1.

Then the vector (θk, rk) defines the k-th point of collision1. The restriction on r is due to the
fact that |r| ≥ 1 corresponds to the particle leaving the convex billiard table.

For a given boundary parametrization B(·), there is a uniquely determined diffeomorphism
f on S1 × (−1, 1), which is as smooth as the boundary, such that

f

(
θk
rk

)
=

(
θk+1

rk+1

)
.

Before moving to the general case, we review the simplest smooth tables.

Lemma 2.1 (Circular Table). The billiard map on a circular table with boundary parame-
terized by

B(θ) =

(
cos(2πθ)
sin(2πθ)

)
, 0 ≤ θ < 1

has the following explicit solution. Starting at the point (θ0, r0), it is given by

f

(
θ
r

)
=

(
θ + C
r0

)
,

where C = arccos(r0)/π depends only on the initial condition.

This implies that for the circle, orbits consist of rigid rotation on horizontal lines in the
phase space θ versus r. The proof of this result is due to Birkhoff [Bir27].

Lemma 2.2 (Ellipse). For any ellipse, the function f is fully integrable. All orbits are
quasiperiodic or periodic orbits, and all solutions lie along smooth curves.

We will give more details on how to compute f in the next section.

1To avoid cumbersome notation, when we talk about a vector, unless otherwise specified, we implicitly
assume that it is a column vector.
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2.2. Birkhoff conjecture. Billiards on ellipses (including the special case of a circle) have
simple nonchaotic behavior. Birkhoff conjectured that these are the only shapes for which
this is true.

Theorem 2.1 (Birkhoff Conjecture). For a convex smooth boundary, if the billiard system
is completely integrable, it must be an ellipse.

Birkhoff first discussed the two-dimensional billiard system with convex boundaries [Bir27].
In 1995, Delshams and Ramı́rez-Ros [DRR96] proved that any non-trivial, symmetric per-
turbation of the ellipse is not integrable. More recently, Avila et al. [ADSK16], proved the
Birkhoff conjecture for tables that are perturbed ellipses with small eccentricity. This was
extended by Kaloshin and Sorrentino [KS18b]. Proofs of local versions of the conjecture
are given in [DRR96, KS18a]. Bialy and Mironov [BM22] proved the Birkhoff conjecture
for centrally-symmetric C2-smooth convex planar billiards. Baracco and Bernardi [BB24]
proved that a totally integrable strictly-convex symplectic billiard table, whose boundary has
strictly positive curvature, must be an ellipse. For more discussion on recent results and open
problems in Birkhoff billiards, refer to [BFG+22, KS22, LT07].

2.3. Related numerical work. There are many existing methods for numerically comput-
ing billiard maps. Levi and Tabachnikov [LT07] develop a method for convex tables that
utilizes the minimization property to find the point of next contact of the particle with the
boundary. An issue with this method is that the minimization problem has two solutions. For
trajectories that are close to tangent, it is hard to distinguish the spurious from the correct
solution.

Lansel and Porter [LP04] and [Tur16] simulate classical billiard systems that are not nec-
essarily convex. Both methods are computationally slow, as they directly track the full
trajectory of the ball. Solanpää et al. [SLR16] consider more general nonconvex billiard
systems for two-dimensional tables. They simulate models for various billiards and diffu-
sion models including those with multiple charged particles and those subject to magnetic
fields. In [dCHSL22], da Costa et al. describe billiard dynamics on oval-like tables using a
polar equation, with a circle approximation to estimate the next point of contact with the
boundary.

There are a number of other works with methods for computing billiards maps. See [AV21,
BFB+11, CF21, Dat17, Kni98, MRRTS16, PRK22, PTZ23, RGK21]. None of these previous
works includes computation of invariant manifolds for billiard maps, and they are not ideally
suited for that purpose, meaning that we had to create a new numerical method rather than
being able to use one of the existing methods.

3. Numerical computation of the billiard map

We now discuss our numerical procedure for evaluating the real billiard map.

3.1. Table shapes. Note that an ellipse with eccentricity
√

1− b21/a
2
1 has parameterization

(1) E(θ) =

(
a1 cos(2πθ)
b1 sin(2πθ)

)
.
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We focus on perturbed ellipses of the form B(θ) = (x(θ), y(θ)) with Fourier series given by

x(θ) = a1,1 cos (2πθ) +
n∑

k=2

ak,1 cos (2kπθ) + bk,1 sin (2kπθ)

y(θ) = b1,2 sin (2πθ) +
n∑

k=2

ak,2 sin (2kπθ) + bk,2 sin (2kπθ).

(2)

Table A B C D E
(a1,1, a2,1, a3,1) (1.1,0.03,0) (1.1,0.05, 0.00015) (1.1, 0.08, 0.0002) (2, 0.04,0) (2, 0.05,0)
(b1,2, b2,2, b3,2) (1,0.03,0) (1,0.035, 0.0001) (1, 0.095, 0.0001) (1, 0.035,0) (1, 0.065,0)
Eccentricity 0.4583 0.4583 0.4583 1.7321 1.7321

Table 1. The coefficients used for our choice of perturbed elliptical billiard
tables, referred to as Billiard Tables A–E. Any unspecified coefficients are zero.
The bottom row states the eccentricity of the associated unperturbed ellipse.

Notice that for a table specified by (2), if a1,1 and b1,2 are the only nonzero coefficients,
then the table is an ellipse. In particular, for any table, the ellipse associated with this table is
the ellipse with the same a1,1 and b1,2 values (all other coefficients set to zero). The particular
tables we have used for our numerics are referred to as Billiard Tables A–E. The coefficients
ak,i and bk,i are given in Tbl. 1. For Tables A-C, the associated ellipse has a1,1 = 1.1 and
b1,2 = 1. For Tables D and E the associated ellipse as a1,1 = 2 and b1,2 = 1. Tables A-E and
the associated ellipses are depicted in Figure 5.

Figure 5. Shape of billiard tables used in the numerics. (Left) Billiard Tables
A-C are perturbations of an ellipse with eccentricity 0.4583. (Right) Billiard
Tables D and E are perturbations of an ellipse with eccentricity of 1.7321.

Since ellipses are convex and since B(θ) varies continuously with respect to the coefficients,
the table remains convex when the higher-order Fourier coefficients are sufficiently small –
specifically, if for i = 1, 2 and for all k > 1, |ak,i| and |bk,i| are significantly smaller than |a1,1|
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and |b1,2|, the table remains convex. To illustrate how convexity is lost as these pertubations
grow, consider the parameterized table with coefficients given by:

(a1,1, a2,1) = (1.1, 0.03ϵ)

(b1,2, b2,2) = (1, 0.025ϵ).
(3)

For ϵ = 0, this table is an ellipse. Figure 6 (left panel) shows how the table shape changes as
ϵ increases, while the right panel shows the minimum value of the signed curvature measured
along the boundary of the table. At ϵ ≈ 9, the minimum signed curvature passes through
zero, and the table loses convexity. The tables given by (3) have the same associated ellipse
as Billiard Tables A, B, and C; in particular Billiard Tables A-C have coefficients a2,1 and
b2,2 with ϵ < 4, which is clearly before convexity is lost.

Figure 6. (Left) The shape of a table with the nonzero coefficients given
by (3) for values of ϵ between 0 and 10. (Right) The minimum signed curvature
of the table. When ϵ ≈ 9, the signed curvature is zero at a point on the
boundary, implying that the table has lost convexity.

3.2. Iteration for elliptical tables. In order to compute the billiard map for general tables,
we use the fact that we can directly compute the billiard map for an ellipse. We compute
the location of each bounce on the table’s corresponding ellipse, then use this as the initial
guess for Newton’s method to find the location of the bounce on the perturbed table. In this
section we explain how to compute the ellipse case.

Let B(θ) = (x(θ), y(θ)) = (a1 cos (2πθ), b1 sin (2πθ)) parameterize an ellipse, as introduced

in (1). Given an input (θ, r), we seek (θ̂, r̂) such that f(θ, r) = (θ̂, r̂). Based on r, we can use

the arccosine function to find the direction vector v. Since B(θ) and B(θ̂) must lie on the
line parallel to the vector v = (v1, v2), there exists s∗ such that

(4) B(θ̂) = B(θ) + s∗v.

Let

d1 = v1/a1 and d2 = v2/b1.
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Combining these equations with the equation for an ellipse and solving for s∗ gives

(5) s∗ = −2

(
d1 cos (2πθ) + d2 sin (2πθ)

d21 + d22

)
.

Plugging this value back into (4) to get B(θ̂) = (x̂, ŷ). We find θ̂ from B(θ̂) since

b1
a1

tan(2πθ̂) =
ŷ

x̂
.

This last statement is where the simplification of working with the ellipse is really clear, since
for a perturbed ellipse, we cannot solve directly and must instead use a two-dimensional root
finding method. Finally, from this point finding r̂ is exactly the same as for the perturbed
case, and it will be explained in the next section.

Figure 7. Notation for our numerical methods. Left: v, γ, T, and τ . Right:
The line L contains B(θ) and B(θ̂).

Figure 8. Computation of the r̂ from v and θ̂.

3.3. Iteration for general billiard tables. Given θ and r, we use the following notation,
depicted in Fig. 7 (left).

(1) T = B′(θ) the tangent vector to the boundary curve.

(2) γ is defined implicitly by r = cos γ. We therefore define it directly by γ = arccos r.
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(3) τ is the angle between the positive horizontal direction and T . Thus τ is defined
implicitly by T2/T1 = tan τ . To find τ , we use the quadrant-specific version of the
arctan function (atan2 in MATLAB) and set τ = atan2(T ).

(4) v is defined implicitly by saying that γ is the angle between v and T . From the
previous two definitions, we get

v =

(
cos (γ + τ)
sin (γ + τ)

)
.

Using the notation defined above, we are ready to find θ̂ using the fact that B(θ) and B(θ̂)
lie on a line parallel to v, given by

(6) L(s) = B(θ) + sv,

where s ∈ R is a scalar. See right panel of Figure 7. Since the table is convex, this line has
exactly two intersection points with the boundary, the first being the original point B(θ) at

s = 0. The second point B(θ̂) occurs at s > 0. As long as we have a good guess near the
desired solution, this intersection can be formulated as a zero finding problem

(7) 0 = h(s, θ̂) = L(s)−B(θ̂),

where the function h : R2 → R2. Since L and B are both smooth, we solve using Newton’s
method.

We now explain how to find a good initial guess (sguess, θ̂guess) for our Newton’s method to
find a root for h. We saw in the last section that if fe is the billiard map for an ellipse, then the
iterate fe(θe, re) = (θ̂e, r̂e) can be computed in an explicit way, and this calculation also yields

s∗. Therefore, for the map fe ellipse associated with our table, we compute fe(θ, r) = (θ̂e, r̂e).

We use sguess = s∗, the s value for the ellipse given in (5) and θguess = θ̂e for our guess

for Newton’s method. This is usually a good enough guess to allow us to find (θ̂, r̂) for the
perturbed table.

Though the method above works the vast majority of the time, it is not enough to guarantee
convergence to the correct root in some small number of cases. We make two modifications.
The first modification takes into account that when the ball only bounces a short distance,
or more specifically |r| is close to 1, then Newton’s method is likely to find the spurious root
that occurs at s = 0. In order to avoid this problem, and make sure that we converge to the
correct root in these cases, we use the method of deflation on the function h to eliminate
the incorrect zero to which we do not want Newton’s method to converge. That is, since we
know that h has a root at (s, θ̂) = (0, θ), we modify h as follows

h̃(s, θ̂) =
h(s, θ̂)

∥(s− 0, θ̂ − θ)∥
.

This has the same second root as h but avoids the spurious solution. For a more complete
discussion on deflation see [BG71, PW71, Bee15, FBF15].

The second modification is a technical modification in making sure that the initial guess
is well defined. It corrects for the fact that v for the perturbed table might point outside the
associated ellipse table. See the discussion and Figure 16 in Appendix A.

After we have found θ̂, the last step is to find r̂. Using similar notation as before, we use
the notation below. See Fig. 8.
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(1) T̂ = B′(θ̂) is the tangent vector.
(2) τ̂ is the angle between the tangent line and the positive horizontal axis.
(3) ρ̂ is the angle between v and the positive horizontal axis.

(4) γ̂ = ρ̂ − τ̂ . This is the angle between v and T̂ , which is up to sign the same as the

angle between T̂ and the reflected vector v̂ . (We never need to compute v̂.)
(5) r̂ = cos γ̂ .

We have found this method to work without failure for small perturbations of ellipses. In
particular, since we initialize Newton’s method with (sguess, θ̂guess) = (s∗, θ̂e), the boundary
of a too greatly perturbed table may be insufficiently close to the guess to get convergence.
In order to find an upper bound on the perturbation which results in Newton’s method con-
verging within a reasonable number of iterations, we studied the table with coefficients given
in (3). This table was previously found to have lost convexity around ϵ ≈ 9 (see Figure 6),
but Newton’s method was found to converge reliably only for ϵ ∈ [0, 5]. Convergence of
Newton’s was studied in depth for ϵ ∈ [5, 6.5]. We calculated orbits for an initial location of
(θ0, r0) with θ0 = 0.3 and 100 values of r0 ranging from −0.9 to 0.9. These initial conditions
were tested on the table given by (3) for each value of ϵ, where 23 values of ϵ were chosen,
ranging from ϵ = 5 to ϵ = 6.5. We call Newton’s non-convergent if for any bounce in the first
100 iterations of the orbit, Newton’s method did not converge. Any ϵ which resulted in a
non-convergent Newton’s for any initial condition was said to be too large of a perturbation.
We found that for ϵ ∈ [5.0, 5.778], the table was sufficiently close to elliptical for our method
to converge, while for ϵ ≥ 5.8434, the table was non-convergent often enough to make the
method impractical.

3.4. Continuation – analytic billiard maps. We extend the billiard map analytically to
a complex domain via the following steps.

(1) Implicitly define v as a function of (θ, r): We rewrite our statements about τ, γ, θ, T, r,
and v implicitly as a root finding problem.

g(τ, γ, θ, r) =

(
cos γ − r

T1 sin τ − T2 cos τ

)
=

(
0
0

)
,v =

(
cos(γ + τ)
sin(γ + τ)

)
Note that g is perfectly well defined for complex values of τ, γ, θ, and r. Indeed, g is
complex analytic in these variables.

By implicit differentiation

∂v

∂(θ, r)
=

∂v

∂(γ, τ)

∂(γ, τ)

∂(θ, r)

so that

∂(γ, τ)

∂(θ, r)
= −

(
∂g

∂(γ, τ)

)−1 ∂g

∂(θ, r)

∂v

∂γ
=

∂v

∂τ
=

(
− sin(γ + τ)
cos(γ + τ)

)
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∂g

∂(θ, r)
=

 −1 0

0
∂T1

∂θ
sin τ − ∂T2

∂θ
cos τ


∂g

∂(γ, τ)
=

( − sin γ 0

0 T1 cos τ + T2 sin τ

)

The term ∂g/∂(γ, τ), is non-singular under the following condition, which holds for
any well defined billiard iterate.
(a) sin γ ̸= 0 meaning that γ ̸= 0, π. These values correspond to the cases where the

direction of bounce is tangent to the boundary – which is not a possibility for
any convex billiard table.

(b) T1 cos τ + T2 sin τ ̸= 0. If this was equal to zero and g = 0, then we can show
that T1 = T2 = 0.

(2) Implicitly define (s, θ̂) as a function of (θ, r): We quickly restate the function h so
that we can write down the derivative.

h(θ, r, s, θ̂) = B(θ) + sv −B(θ̂) = 0

To compute the derivative, define T̂ = B′(θ̂) and T = B′(θ). Using implicit differen-
tiation, we get

∂(s, θ̂)

∂(θ, r)
= −

(
v | −T̂

)−1
(

s
∂v

∂r
| T + s

∂v

∂θ

)
For the part in the inverse to be singular, we would need T̂2/T̂1 = v2/v1. This only

would occur if v and T̂ were parallel, which cannot happen for a convex billiard table.
(3) Implicitly define r̂ as a function of (θ, r): This is formulated implicitly as follows.

k(θ, r, ρ̂, τ̂) =

 T̂1 sin τ̂ − T̂2 cos τ̂

v1 sin ρ̂− v2 cos ρ̂

 =

(
0
0

)
, where r̂ = cos(ρ̂− τ̂).

Note that this is written in terms of v and not v̂. Using implicit differentiation

∂r̂

∂(θ, r)
=

∂r̂

∂(ρ̂, τ̂)

∂(ρ̂, τ̂)

∂(θ, r)

and

∂(ρ̂, τ̂)

∂(θ, r)
= −

(
∂k

∂(ρ̂, τ̂)

)−1 ∂k

∂(θ, r)
.

These partial derivatives are given by

∂k

∂(ρ̂, τ̂)
=

 0 T̂1 cos τ̂ + T̂2 sin τ̂

v1 cos ρ̂+ v2 sin ρ̂ 0

 ,
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and

∂k

∂(θ, r)
=


∂T̂1

∂r
sin τ̂ − ∂T̂2

∂r
cos τ̂

∂T̂1

∂θ
sin τ̂ − ∂T̂2

∂θ
cos τ̂

∂v1
∂r

sin ρ̂− ∂v2
∂r

cos ρ̂
∂v1
∂θ

sin ρ̂− ∂v2
∂θ

cos ρ̂

 , where r = cos γ.

(4) It only remains to show that ∂k/∂(ρ̂, τ̂) is non-singular when k = 0. If the determinant

of the Jacobian matrix is zero, then we can show that either v or T̂ is the zero vector.
By our assumptions on v and B, that cannot happen.

Unlike in the real-valued case, it is not feasible to use an ellipse as an initial guess. In
fact, we can continue the ellipse into the complex plane along different paths to get different
answers. Therefore to find the iterate of (θ, r) we require an initial guess (θ̂guess, r̂guess), as
well as guesses approximating the complex-valued angles τ, γ, τ̂ , γ̂. These guesses come from
the exact iterate values for a point (θp, rp) which is close to (θ, r), so the analytic continuation
is performed using numerical continuation.

Note that the continuation version of the map can be continued to the case of θ̂ outside of
[0, 1), whereas the way that the real version was designed means that it will never be possible
to find an iterate outside this range.

4. Parameterization Method for Hyperbolic Periodic Orbits of Planar Maps

In this section, after some initial setup, we present numerical methods for identifying
dynamical structures for billiards maps.

4.1. Multiple shooting. In order to study periodic orbits, we set up a multiple shooting
map. We consider only the special case of planar maps, as this is the case used in the
present work, and this restriction simplifies parts of the discussion. The material in this
section and in Section 4.2 is standard, but it is essential for the remainder of the present
work. We restate a number of well known results without proof in this context. We refer to
[SN10, GMJ17, HLMJ23] for more complete discussion, including many additional references.

The following procedure referred to asmultiple shooting for a periodic orbit of f . It converts
a periodic orbit into a fixed point of the higher-dimensional map F in (8). Let S ⊂ R2 be
an open and connected set and suppose that f : S → R2 is a smooth map. For k ∈ N, let fk

denote the composition of f with itself k times, and let f0 = IdR2 denote the identity map.
We say that û ∈ S is a period-K point for f if

fK(û) = û.

We say that û has least period K if fk(û) ̸= û for 0 < k < K. Letting u1 = û, and
uj = f(uj−1) for 1 < j ≤ K, we say that the ordered collection of points {u1, . . . , uK}, each
in S, is a periodic orbit for f , noting that f(uK) = u1.

FixK, let SK ⊂ R2K denote the k-fold cartesian product of S. Define the multiple shooting
map FK : SK → R2K by

(8) FK(u1, u2, . . . , uK−1, uK) = (f(uK), f(u1), f(u2), . . . , f(uK−1)).

Note that u = (u1, . . . , uK) ∈ SK satisfies FK(u) = u, if and only if {u1, . . . , uK} is a period-
K orbit of f . That is, fixed points of FK correspond to period-K orbits of f . Moreover, K
is the least period if and only if u1 ̸= . . . ̸= uK . We will suppress the subscript and write
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FK = F when K is clear from context. The Jacobian matrix of F is the following 2K × 2K
matrix

DF(u) =


02×2 02×2 · · · 02×2 Df(uK)

Df(u1) 02×2 · · · 02×2 02×2
...

...
. . .

...
...

02×2 02×2 · · · Df(uK−1) 02×2

 ,

where 02×2 denotes the 2× 2 zero matrix and Df(ui) is the 2× 2 Jacobian of f evaluated at
ui. The virtue of the multiple-shooting framework is that it dispenses with compositions.

Fixed points of F are equivalent to zeros of the map G : SK → R2K defined by

G(u) = F (u)− u,

and zeros of G can be computed using Newton’s method. That is, if u0 ∈ SK has ∥G(u0)∥
small enough, then the Newton sequence

{
uk
}
defined by

uk+1 = uk +∆k,

where ∆k ∈ SK solves the linear equation

DG(uk)∆k = −G(uk),

converges to u∗ with G(u∗) = 0. The components of u∗ provide a periodic-K orbit for f .
Here we have the explicit formula

DG(u) = DF (u)− Id2K×2K ,

where Id2K×2K denotes the 2K × 2K identity matrix.

4.2. Stability for periodic orbits. We state conditions for the stability of periodic orbits.
As with the previous section, this material is standard but essential and thus is restated
here. The stability of a periodic orbit is defined by applying fixed point stability (Hartman-
Grobman theorem/stable manifold theorem) to the composition map fK . Moreover, the
eigenvalues of the matrices DfK(uj) do not depend on 1 ≤ j ≤ K. That is, each of these
matrices has the same eigenvalues λ1, λ2 ∈ C, and we refer to these as the multipliers of
the periodic orbit. Note, however, that the associated eigenvectors are in general different
for different j. The multipliers λ1, λ2 can be recovered from the Jacobian of the multiple
shooting map. Indeed, using Proposition 1 of [SN10], Lemma 3.1 of [GMJ17] or Proposition
3.1 of [HLMJ23], we get the following lemma.

Lemma 4.1 (Multipliers via the multiple shooting eigenvalues). Let u∗ = (u1, . . . , uK) be a
fixed point of the multiple shooting operator F associated with the map f , so that each uj is
a period-K under f .

• The eigenvalues of DF (u∗) are the K-th roots of the multipliers of the periodic
orbit. More precisely, if (α, ξ) is an eigenvalue-eigenvector pair for DF (u∗) with
ξ = (ξ1, . . . , ξK), then (αm, ξj) is an eigenpair for DfK(uj), 1 ≤ j ≤ K.

• If {u1, . . . , uK} is a period-K saddle orbit, then the multipliers |λ1| < 1 < |λ2| are
real, since the matrices DfK(uj) are real, and each has a real eigenbasis.

• If (α, ξ) is an eigenpair with α and ξ complex then, since DF (u∗) is a real matrix,
we have that (α,Real(ξ)) and (α, imag(ξ)) are both eigenpairs for DF (u∗).
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In the present work, the map f is orientation preserving, and the orbits we consider have
two positive real multipliers (we did not find orbits with two negative multipliers, but we
have not ruled them out). When there are two positive real multipliers, there is always a
K-th root which is real, and this is the root we will always choose to work with. This leads
to power series solutions with real coefficients, making it especially easy to recover the real
image of the parameterization. Note however that, more generally, if DfK(uj) has a negative
multiplier, and if K is even, then there will be no real K-th root. In this case, recovering the
real image of the perameterization is more delicate. This, and more general cases involving
higher dimensional manifolds and maps, are discussed in detail in [GMJ17].

4.3. Identifying orbit types – frequency and chaos. If f is an area preserving map
of the plane, then typical orbits of f are either periodic, quasiperiodic, or chaotic, and the
method of weighted Birkhoff averages can be used to distinguish between these, as well as
computing the frequency of quasiperiodic orbits. We briefly discuss this method, and refer
to [DSSY17, DY18, DSSAY19, SM20, MS21] for more detailed discussion.

Consider an orbit of f {(θk, rk)}∞k=0, where (θk+1, rk+1) = f(θk, rk). The frequency (or
rotation number) of the orbit is defined to be the average amount that the θ variable changes
in a single iterate. More precisely, define

frequency = lim
N→∞

1

N

N−1∑
k=0

(θk+1 − θk).

Under standard smoothness and ergodicity hypotheses, the limit of this average is an invariant
of the orbit and does not depend on the initial condition/initial position along the orbit. In
practice however this sum converges very slowly, with complexity O(1/N).

The weighted Birkhoff average is a tool which accelerates the convergence, but only along
nonchaotic orbits with Diaophantine frequency. This results in spectral convergence, faster
than O(1/Nk) for all k ∈ N. The weighted Birkhoff average still converges slowly for chaotic
orbits, and because of this it can be used as a sieve to distinguish chaotic from quasiperiodic
orbits.

In order to distinguish chaotic orbits, given a length-N orbit segment, we compute a
weighted Birkhoff average on iterates 0, . . . , N/2, and compare the answer to the same
weighted Birkhoff average for iterates N/2, . . . , N (in practice it suffices to take N = 1000).
Since a Birkhoff average depends only on the orbit, if the difference in the two answers is
small, this an indication that the average is converging rapidly, and we can classify the or-
bit as nonchaotic; if the difference is large, the orbit is classified as chaotic. Applying this
method to a large number of randomly selected points allows us to identify regions of chaos
for billiard maps. These regions are colored gray in all phase plane figures.

Additionally, for nonchaotic orbits, the weighted-Birkhoff average allows us to give a highly
accurate computation of the orbit frequency. This method was used to determine the color
variation for all phase plane figures.

4.4. Finding periodic orbits. In searching for periodic orbits, our goal is to find ones that
possess transverse homoclinic orbits. Therefore, we only seek periodic orbits within regions
identified as chaotic.

Initial guesses for the multiple shooting Newton method for periodic orbits can be guessed
by looking near elliptical islands. Indeed, since periodic orbits typically appear in hyperbolic
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and elliptic pairs, and since the elliptic orbits are easy to see from the coloring of the phase
space plot, we can often find initial data for hyperbolic periodic orbits by looking “between”
the elliptic islands. Using this geometric intuition, it is possible for orbits of small period,
such as say any period up to 5, to simply read good enough initial guesses directly off a
phase plane plot colored by frequencies location of chaotic orbits, and to have these guesses
converge under Newton’s method without further effort. Finding periodic orbits of larger
periods is a bit more ad hoc and involves several iterations of the same process, including
zooming in on the colored phase plane figure to see more detail of the elliptical islands. With
a bit of work we were able to find periodic orbits of periods up to 30. (We did not look for
orbits beyond period 30.)

4.5. Parameterization method for one-dimensional spectral submanifolds. Suppose
that p0 ∈ Rd is a hyperbolic fixed point for a real analytic map F . In this case there exist
du, ds ∈ N with du + ds = d such that DF (p0) has ds stable eigevalues λs

1, . . . , λ
s
ds

∈ C,
and du unstable eigenvalues λu

1 , . . . , λ
u
du

∈ C. Assume that DF (p0) is diagonalizable, so that

there are ξs1, . . . , ξ
s
ds

∈ Rd associated stable, and ξu1 , . . . , ξ
u
du

∈ Rd unstable eigenvectors. Since
DF (p0) is diagonalizable, these are linearly independent and form a basis for Rn. We are
interested in the existence of one-dimensional invariant submanifolds, tangent at p0 to one of
these eigenvectors. Such manifolds are referred to as one-dimensional spectral submanifolds.

One-dimensional submanifolds of the stable/unstable manifold are typically not unique
(in fact occur in continua). We select a unique spectral submanifold by imposing maximal
regularity. The issue is that, while a typical one-dimensional stable/unstable manifold tangent
to an eigenvector is only C∞ at the fixed point p0), there is a unique analytic one. The
parameterization method is the right tool in this context. It works by looking for an analytic
conjugacy to the linear dynamics generated by the eigenvalue. The following lemma provides
a single equation which determines a fixed point, its eigendata, and a spectral submanifold.
We include the elementary proof for the sake of completeness.

Lemma 4.2 (Parameterization Lemma). Let U ⊂ Rd be an open, connected set, and F : U →
Rd be a real analytic map. Suppose that λ ∈ R, that P : [−1, 1] → Rd is real analytic
on (−1, 1), that P is continuous on [−1, 1], and that the pair (λ, P ) satisfy the conjugacy
equation

(9) F (P (σ)) = P (λσ), σ ∈ [−1, 1].

If P ′(0) ̸= 0 and 0 < |λ| < 1, then:

• P (0) is a fixed point of F ,
• (λ, P ′(0)) is an eigenpair for DF (P (0)),
• P ([−1, 1]) is an analytic curve, tangent to the stable eigenvector associated with λ at
σ = 0, and contained in the local stable manifold of P (0).

Proof. To see that the first point is true, simply evaluate the conjugacy of Equation (9) at
σ = 0 to obtain

F (P (0)) = P (0).

To see the second point, differentiate Equation (9) with respect to σ to obtain

DF (P (σ))P ′(σ) = λP ′(λσ), σ ∈ (−1, 1),



18 BISHOP ET AL.

and evaluate at σ = 0 for
DF (P (0))P ′(0) = λP ′(0),

with P ′(0) ̸= 0 by hypothesis.
Finally, to establish the third point note that the fixed point P (0) is in the stable manifold

of P (0) by definition. Then choose σ0 ∈ [−1, 1], σ0 ̸= 0, and define

(10) xn = P (λnσ0),

for each n ≥ 0. Note that, since 0 < |λ| < 1 is real, P (λnσ0) is well defined for each n ≥ 0.
Now, observe that {xn}∞n=0 is an orbit of F . To see this, apply F to both sides of Equation

(10), use the conjugacy of Equation (9), and then the definition xn to obtain

F (xn) = F (P (λnσ0))

= P (λn+1σ0)

= xn+1.

Repeated application of this identity gives

Fn(x0) = xn.

To see that the orbit {xn}∞n=0 is in the stable manifold of P (0), note that combining the
previous identity with the continuity of P and the functional equation gives

lim
n→∞

Fn(x0) = lim
n→∞

F (xn)

= lim
n→∞

P (λn+1σ0)

= P
(
lim
n→∞

λn+1σ0

)
= P (0),

again using that 0 < |λ| < 1. Since σ0 ̸= 0 was otherwise arbitrary, this shows that the image
of [−1, 0)∪ (0, 1] under P is a subset of the stable manifold attached to P (0) (and the image
of σ = 0 was mentioned already above). Moreover, the image of P is by definition tangent to
P ′(0), which is the stable eigenvector associated with the eigenvalue λ by the second bullet
point. □

The Parameterization Lemma explains our interest in Equation (9), but leaves open ques-
tions of existence and uniqueness. Here we appeal to Theorem 4.1 of [CFdlL05], which deals
precisely with the one dimensional analytic situation at hand (in fact, the theorem is a lit-
tle more general than we need, as it allows for non-hyperbolicity, complex valued maps, and
complex eigendata). More precisely, assume that the following non-resonance condition holds

(11) λn /∈ Spec(DF (P (0))), n ≥ 2.

From this assumption, Theorem 4.1 of [CFdlL05] concludes that Equation (9) has exactly
one analytic solution for each choice of eigenvector P ′(0).

The choice of the scaling of the eigenvector determines the radius of convergence of P ,
and by using the rescaling argument from the proof of Theorem 4.1, one can arrange that P
is analytic on a disk of radius 1 + ϵ in C. If F is real analytic then so is P , and this gives
real analyticity on (−1, 1) and continunity on [−1, 1] as desired. We stress that the proof of
Theorem 4.1 gives that the solution of Equation (9) is globally unique as soon as the length
of the eigenvector P ′(0) is fixed.
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We also note, as observed in Remark 4.2 of [CFdlL05], that the invertibility of DF (P (0))
implies that there is an N ≥ 2 so that Equation (11) holds for all n ≥ N . So, despite first
appearances, the non-resonance condition imposes only a finite number of constraints on the
eigenvalues of DF (P (0)), and Theorem 4.1 applies generically.

The discussion above motivates the following. Note that we use the usual trick of constrain-
ing the square of the norm of the eigenvector, rather than the norm, to obtain an equivalent
but simpler formula for the derivative.

Lemma 4.3 (Functional equation, stable case). Fix s > 0 and define the operator Ψs : R ×
Cω([−1, 1],Rd) → R× Cω([−1, 1],Rd) by

Ψs(λ, P (σ)) =

(
∥P ′(0)∥2 − s

F (P (σ))− P (λσ)

)
If (λ, P ) is a zero of Ψs with 0 < |λ| < 1, then P satisfies the hypotheses of Lemma 4.2. If
the non-resonance condition of Equation (11) is satisfied, then there exists an ϵ > 0 so that
for all 0 < s ≤ ϵ, Ψs has a globally unique solution.

Consideration of the unstable manifold leads to a similar zero finding problem. Since we
assume that P (0) is a hyperbolic fixed point, we have that F is a local diffeomorphism near
P (0). Let F−1 denote a local inverse with F−1(P (0)) = P (0), and suppose that Q : [−1, 1] →
Rd is a real analytic function with

(12) F−1Q(σ) = Q(µσ) σ ∈ [−1, 1],

with Q′(0) ̸= 0 and 0 < |µ| < 1. Then by Lemma 4.2, Q(0) is fixed for F−1, (µ,Q′(0))
are a stable eigenpair for DF−1(Q(0)), and Q parameterizes a subset of the local stable
manifold attached to Q(0) and tangent to the eigenvector of µ. It is then a standard result
from spectral theory that (λ,Q′(0)) with λ = µ−1 is an unstable eigenpair for DF (Q(0)).
Moreover, Q parameterizes an arc in the unstable manifold attached to Q(0) and tangent to
the eigenvector Q′(0) of λ. Summarizing, we have the following.

Lemma 4.4 (Functional equation, unstable case). Fix u > 0 and define the operator Ψu : R×
Cω([−1, 1],Rd)

Ψu(µ,Q(σ)) =

( ∥Q′(0)∥2 − u

F (Q(µσ))−Q(σ)

)

If (µ,Q) is a zero of Ψu with 0 < |µ| < 1, then Q(0) is a fixed point of F , (µ−1, Q′(0)) is an
unstable eigenpair for DF (Q(0)), and Q parameterizes a one-dimensional arc in the unstable
manifold attached to Q(0). This arc is tangent to the unstable eigenspace associated with
µ−1. If λ = µ−1 satisfies the non-resonance condition of Equation (11), then there exists an
ϵ > 0 so that for all 0 < u ≤ ϵ, Ψu has a globally unique solution.

The lemma is established by applying F−1 to the second component equation of Ψu and
observing that this yields Equation (12).
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In Section 4.7, we require the Frechét derivatives of Ψs and Ψu. The Frechét derivatives
are written as follows, where λ, µ, h ∈ C and P,Q,H ∈ Cω(B,Rd).

(13)

DλΨs(λ, P (σ))[h] =

(
0

−P ′(λσ)σh

)
,

DPΨs(λ, P (σ))[H] =

(
2⟨P ′(0), H ′(0)⟩

DF (P (σ))H(σ)−H(λσ)

)
,

DµΨu(µ, P (σ))[h] =

(
0

DF (Q(µσ))Q′(µσ)σh

)
,

DPΨu(µ, P (σ))[H] =

(
2⟨Q′(0), H ′(0)⟩

DF (Q(µσ))H(µσ)−H(σ)

)
Remark 4.1 (Generalizations). The parameterization method generalizes to the case when
there are resonances. However, one cannot then analytically conjugate to linear dynamics.
Instead, one studies a conjugacy equation of the form

F (P (σ)) = P (K(σ)),

where K is a polynomial map whose degree and monomial terms are determined by the
resonances. More than this, the parameterization method extends to higher dimensional
spectral submanifolds, non-hyperbolic fixed points, Ck regularity, and even to other kinds
of invariant objects, for both maps and vector fields defined on Banach spaces. Much more
general treatment, and many additional references, are found in the paper [CFdlL03], and
also to the book [HCF+18]. See also Appendix B of [CFdlL05] for a scholarly discussion of
the historical development of these ideas.

4.6. Stable and unstable manifolds of a planar hyperbolic periodic orbit. As an
application of the ideas presented in the previous section, we discuss a parameterization
method for stable/unstable manifolds of periodic orbits of maps. By restricting to saddle
type orbits of planar maps, we obtain an especially complete picture. Note, the material in
this section is adapted from [GMJ17], where generalizations to higher dimensional maps and
manifolds are also found. We refer also to the paper [TMJ22] where extensions to implicitly
defined maps given by polynomial relations are considered.

Let S ⊂ R2 be an open and connected set, and suppose that f : S → R2 is a real analytic
mapping. Let us also assume that f is orientation preserving (as is the case for the math-
ematical billiard maps considered in the present work). Let F : SK → R2K be the multiple
shooting map for f as defined by Equation (8). Let Ψs be the operator defined in Lemma
4.3 where s > 0 is fixed. Suppose that for a fixed value of λ with 0 < |λ| < 1 and a fixed
function P : [−1, 1] → R2K we have that Ψs(λ, P ) = 0. Combining Lemma 4.1 from Section
4.1 with Lemma 4.2 from Section 4.5, we have the following:

• P (0) ∈ R2K is a fixed point of the multiple shooting map F . Letting P (0) =
(p1, . . . , pK) with p1, . . . , pK ∈ R2, each pj has period K for f . That is, the com-
ponents of P (0) provide a periodic orbit for f . If pk ̸= pj when j ̸= k, then K is the
least period.

• λm = α is a stable multiplier for the periodic orbit. Moreover, writing P ′(0) =
(ξ1, . . . , ξK) with ξ1, . . . , ξK ∈ R2, we have that ξj is a stable eigenvector for DfK(pj).
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• Let P (σ) = (P1(σ), . . . , PK(σ)) with each Pj taking values in R2. Then Pj(σ) param-
eterizes a subset of the stable manifold attached to pj , and is tangent at zero to the
ξj .

Only the last point requires justification. Note that in the multiple shooting case, the
functional equation

F (P (σ)) = P (λσ),

can be expressed in terms of f as

f(PK(σ)) = P1(λσ)

f(P1(σ)) = P2(λσ)

f(P2(σ)) = P3(λσ)

...

f(PK−1(σ)) = PK(λσ)

Applying f to the last equation gives

f2(PK−1)(σ) = f(PK(λσ)),

combining this with the first equation leads to the following.

f2(PK−1)(σ) = P1(λ
2σ).

Continuing in this way, we obtain

fK(P1(σ)) = P1(λ
Kσ).

But this is the parameterization method for the map fK .
Restarting the whole argument from the second to last equation leads to

fK(P2(σ)) = P2(λ
Kσ),

and working our way through each component equation in a similar way leads to

fK(Pj(σ)) = Pj(λ
Kσ).

for each 1 ≤ j ≤ K.
Since we assume that the orbit is hyperbolic, and that the mapping f is a planar, real

analytic, and orientation preserving, we have that the orbit has two real multipliers α, β with
0 < |α| < 1 and |β| > 1. Moreover, αβ = 1, so that they are either both positive, or both
negative. In the present work we consider only the case when both multipliers are positive.
In this case the eigenvalues of DF (P (0)) sort into two sets: the K complex K-th roots of α,

and the K complex K-th roots of β. So, every eigenvalue of DF (P (0)) has either |λ| = α1/K

or |λ| = β1/K . Since all the stable eigenvalue have the same (non-unit) modulus, no power
of one can equal another, and the non-resonance conditions

λn /∈ SpecDF (P (0)),

holds for all n ≥ 2, and similarly for the unstable eigenvalues.
So, the non-resonance conditions are automatically satisfied and the existence of the desired

parameterization is assured. Moreover, since α and β are positive, each has a real K-th root,
and associated real eigenvectors. Then the operators Ψs and Ψu defined in Equations (4.3)
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and (4.4) have unique, real solutions as long as u and s remain in the range 0 < s, u < ϵ for
some ϵ > 0. In practice it may not necessarily be the case that ϵ is small, and numerical
heuristics are discussed below.

4.7. Numerical computation of the local parameterizations. Let

(14) P (σ) =
∞∑
n=0

pnσ
n =

∞∑
n=0

 p1n
...
pdn

σn,

denote a formal power series with pn ∈ Rd. Now choose N ∈ N and write

(15) PN (σ) =

N∑
n=0

pnσ
n,

to denote the truncation of P to order N . We then embed the coefficients of PN in Rd(N+1)

by forming the column vector (written as a row to save space)

(16) p = (p10, . . . , p
1
N , p20, . . . , p

2
N , . . . , pd0, . . . , p

d
N ) ∈ Rd(N+1).

That is, for each 0 ≤ n ≤ N , the numbers pin with 1 ≤ i ≤ d are the components of pn ∈ Rd.
Now, given p ∈ Rd(N+1), we write

q = DFT[F ](p),

to signify that the column vector

q = (q10, . . . , q
1
N , q20, . . . , q

2
N , . . . , qd0 , . . . , q

d
N ) ∈ Rd(N+1),

is the vectorization of the series coefficients of

QN (σ) =
N∑

n=0

qnσ
n ≈ F (PN (σ)), |σ| < 1,

where for each 1 ≤ i ≤ d we compute the series coefficients {qi0, . . . , qiN} by interpolating
the components Fi ◦ PN , 1 ≤ i ≤ d of the composition via the DFT interpolation scheme
discussed in Appendix B.4.

Similarly, for 1 ≤ i, j ≤ d define the coefficient sequences

bij(p) = (bij0 , . . . , b
ij
N ),

which result from applying the DFT algorithm discussed in Appendix B.4 to the composition
maps DFij ◦ P . That is, we let

bij(p) = DFT [∂jFi] (P
N ),

as these coefficients have
N∑

n=0

bijn σ
n ≈ ∂jFi(P

N (σ)) |σ| < 1,

where Fi, 1 ≤ i ≤ d denote the component maps of F . We then define the d2 many (N +
1)× (N + 1) matrices

(17) Bij(p) = ConvMat(bij(p)),
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where the convolution matrix is as defined in Equation (25) of Appendix B.5.
To vectorize the composition P (λσ) and its derivatives we first let Λ,Σ denote the (N +

1)× (N + 1) diagonal matrices

Λ =


1 0 0 . . . 0
0 λ 0 . . . 0
0 0 λ2 . . . 0
...

...
...

. . .
...

0 0 0 . . . λN

 , and Σ =


0 0 0 . . . 0
0 1 0 . . . 0
0 0 2 . . . 0
...

...
...

. . .
...

0 0 0 . . . N

 ,

and define Lλ and NN , the d(N + 1)× d(N + 1) diagonal matrices

Lλ =


Λ 0RN+1 . . . 0RN+1

0RN+1 Λ . . . 0RN+1

...
...

. . .
...

0RN+1 0RN+1 . . . Λ

 , and NN =


Σ 0RN+1 . . . 0RN+1

0RN+1 Σ . . . 0RN+1

...
...

. . .
...

0RN+1 0RN+1 . . . Σ

 ,

and note that Lλp and NNp are, respectively, the vectorizations of the coefficients of PN (λσ)
and σ(PN )′(σ).

Truncating the domain and range of Ψs at order N and vectorizing the inputs and outputs
leads to the map ΨN

s : Rd(N+1)+1 → Rd(N+1)+1 given by

(18) ΨN
s (λ,p) =

(
(p11)

2 + . . .+ (pd1)
2 − s

DFT[F ](p)− Lλp

)
.

To vectorize the derivative, we recall the formulas for the action of the Frechét derivatives
given in Equation (13). First, for 1 ≤ n ≤ N let e∗n denote the N +1 dimensional row vector
with a one in the n-th entry and zeros elsewhere. Keep in mind that we start with a zeroeth
element. Therefore the row vector e∗1 is given by

e∗1 = (0, 1, 0, . . . , 0).

So, if

HN (θ) =
N∑

n=0

hnσ
n,

with hn ∈ Rd, then the first component of the partial derivative DPΨs(λ, P )[H] given in
Equation (13) is

2
〈
(PN )′(0), (HN )′(0)

〉
= 2

(
p11h

1
1 + . . .+ pd1h

d
1

)

=
(
2p11e

∗
1 | 2p21e

∗
1 | . . . | 2pd1e

∗
1

)


h10
...

h1N
...
hd0
...

hdN


.
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Suppressing the action on HN , the partial derivative is represented simply by the 1×d(N+1)
row vector

n(p) =
(
2p11e

∗
1 | 2p21e

∗
1 | . . . | 2pd1e

∗
1

)
.

Similarily, the nontrivial component of the partial derivative DλΨs(λ, P ) given in Equa-
tion (13) is the negative of (PN )′(λσ)σ, and this has vector representation as the d(N + 1)
dimensional column vector

cλ(p) = NNLλ(p).

For the second component of partial derivative DPΨs(λ, P )[H], following Equation (13), we
vectorize DF (PN ) as follows. Let B(p) denote the d(N + 1)× d(N + 1) matrix

B(p) =

 B00(p) . . . B0d(p)
...

. . .
...

Bd0(p) . . . Bdd(p)

 ,

where for 1 ≤ i, j ≤ N the Bij(p) are the (N + 1)× (N + 1) convolution matrices defined in
Equation (17). So, the derivative of ΨN

s has matrix representation

DΨN
s (p) =

(
0 n(p)

−cλ(p) B(p)− Lλ(p)

)
.

By a nearly identical argument, using the same notation, one checks that the vectorization
of Ψu and its derivative are

(19) ΨN
u (µ,p) =

(
(p11)

2 + . . .+ (pd1)
2 − u

DFT[F ](Lµp)− p

)
,

and

DΨN
u (p) =

(
0 n(p)

B(Lµp)cµ(p) B(Lµp)Lµ − I

)
,

where I is the d(N + 1)× d(N + 1) identity matrix.

Now consider the special case where F = FK is the multiple shooting map defined in Equa-
tion (8), with underlying planar map f , so that d = 2K. Let p̄0 ∈ R2K be an approximate
fixed point of the multiple shooting map, in which case the planar components of p̄0 give an
approximate period K orbit for f . Suppose that these components are distinct so that K is
the least period.

Assume that (λ̄, p̄1) is a (numerically computed approximate) real stable (or unstable)
eigenpair for DFK(p̄0). Fix s (or u) a nonzero real number, and rescale p̄1 so that ∥p̄1∥2 = s
(or u). Let

(20) P 0(σ) = p̄0 + σp̄1.

If the data λ̄, p̄0, p̄1 were exact, then P 0 would be a quadratically good approximate solution
of Ψs,u = 0. That is, we would have

∥Ψs(P
0)∥ ≤ Cs2.

So, assuming that p̄0 and p̄1 are good enough approximations, we expect to be able to find
an s, u > 0 so that this initial error is small (limited only by the error in the initial data
which is, presumably, on the order of machine epsilon).
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Let p0 be the vectorization of P 0(σ), and define the Newton sequence

pm+1 = pm +∆m,

where, for m ≥ 0, ∆m solves the linear equation

DΨN
s,u(p

m)∆m = −ΨN
s,u(p

m).

In practice we experiment with the scalings s, u, as we would like to choose the largest
such values so that the Newton sequence converges. More sophisticated continuation schemes
and optimization algorithms for choosing computational parameters for the parameterization
method are discussed in [BLMJ16, HMJ21]

Remark 4.2 (Automatic reducibility). Note that the Newton method just described is a
“large matrix method”. More precisely, if K is the period of the orbit, and N is the poly-
nomial order of approximation, then the linear system determining the Newton step has size
(2K(N + 1) + 1) × (2K(N + 1) + 1). While this presents no problem in the present work,
the complexity can be greatly reduced by exploiting the symplectic structure of the billiard
system to define a diagonal approximate inverse for the Newton matrix. This is referred to
as “approximate reducibility” in the literature, and the interested reader will find much more
on this topic, including many references to its use in the literature, in the book [HCF+18].
Using approximate reducibility would be helpful for studying orbits with much higher period
than those studied here.

Remark 4.3 (The method of jet transport). We note that an alternative to the DFT based
interpolation scheme described above would be to compute necessary compositions using the
method of jet transport described in [GJJCZ25]. Indeed, the reference just cited uses jet
transport to solve equations similar to the conjugacy equations considered in the present
work, applying these ideas to Poincaré maps for ODEs in celestial mechanics. These implicit
Poincaré maps are, if anything, more complicated than the billiard maps studied in the present
work, so we assume that the method or jet transport could be applied to billiards as well. The
only disadvantage of jet transport is that it requires special software like the TAYLOR package
developed by the authors of the reference just cited. Our implementation relies only on
standard numerical linear algebra routines like linear system solvers, eigenvalue/eigenvector
solvers, and (if desired) the FFT. These algorithms are available in any standard numerical
linear algebra package. Our codes for example are implemented in MATLAB.

A useful a-posteriori error indicator is obtained by measuring the defect in the conjugacy
relation. So, define Econj : R× Cω(D,R2K) → R by

Econj(λ, P ) = sup
σ∈D

∥F (P (σ))− P (λσ)∥R2K

Note that Econj(λ̄, P̄ ) = 0 if and only if (λ̄, P̄ ) is the desired solution. A numerical proxy

for the a-posteriori indicator is obtained by sampling the right hand side at M ∈ N points
on the boundary of D, and computing the maximum of this finite set. More precisely, by the
maximum modulus principle we have that

EM
conj(λ, P ) = max

0≤m≤M

∥∥∥F (P (e 2πim
M+1

))
− PN

(
λe

2πim
M+1

)∥∥∥
R2K

,
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bounds Econj(λ, P ), is computable in finitely many operations, and converges to the true
a-posteriori indicator as M → ∞. Note also that, in the case that P = PN is polynomial, it
is efficiently evaluated at the desired roots of using the FFT.

4.8. Growing the local manifolds. To compute larger portions of the stable and unstable
manifolds, we employ a fundamental domain approach that leverages the periodic structure
of the system. Let Ws and Wu denote the global stable and unstable manifolds, respectively.

We work within a fundamental domain D ⊂ R2, a bounded region such that every point
on the global manifold can be obtained by applying forward or backward iterates of the map
F to points in D.

Given the local parameterizations P s(θ) and P u(θ) of the stable and unstable manifolds,
the global manifolds are constructed by first selecting parameterization points θj such that
P s,u(θj) ∈ D. Then for each selected point xj = P s,u(θj), where j = 1, . . . , J , compute:

Wu
global =

J⋃
j=1

M⋃
n=0

Fn(xuj )(21)

Ws
global =

J⋃
j=1

M⋃
n=0

F−n(xsj)

where M is the maximum number of iterates. This approach ensures that the computed
global manifolds cover the relevant phase space region while avoiding redundant computation
outside the fundamental domain.

5. Results

In this section, we give our results. As mentioned in the introduction, the importance of
our findings are twofold: the novelty of the use of the method, and also the implications for
billiard maps. Correspondingly, we divide this section into two parts.

5.1. Results for the parameterization method. To compute the local stable and unsta-
ble manifolds, we solve the functional equations from Section 4.5:

F (P (z)) = P (λz), and F (P (µz)) = P (z),

with |λ| < 1 for the stable case and |µ| = 1/|λ| > 1 for the unstable case. These equations
are solved numerically via Newton iteration formulated in the space of spectral coefficients,
as described in Sections B and 4.7. The two crucial sets of parameters that we vary in our
numerics are the truncation order of the polynomial approximationN , introduced in Equation
(15) and the scaling coefficients. The scaling coefficients are labeled s in Lemma 4.3 and u
in Lemma 4.4, but in this section and in our Tables of numerical parameters, we refer to
these parameters by s = scales and u = scaleu. The resulting local manifolds are shown in
the left panels of Figures 9–11 for the period-10 orbit for Table D, the period-3 orbit for
Table C, and the period-2 orbit for Table B (cf. Tbl. 1), respectively. The corresponding
global manifolds are obtained by iterating the local parameterizations under F . The right
panels of the same figures illustrate these global structures, together with the truncation
order N of the polynomial approximation PN (z) and the number of iterates used.

The novelty of the present computation lies in performing the Newton iteration directly in
the spectral domain, allowing both stable and unstable parameterizations to be obtained with
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Figure 9. Local (left) and global (right) stable (blue) and unstable (red)
manifolds for a period-10 orbit for Table D (cf. Tbl. 1). The global manifolds
were computed with 20 iterates of the fundamental domain and N = 60.

Figure 10. Local (left) and global (right) stable (blue) and unstable (red)
manifolds for a period-3 orbit for Table C (cf. Tbl. 1). The global manifolds
were computed with 6 iterates of the fundamental domain and N = 60.

high-order accuracy and without explicit recursion on the coefficients. In contrast to tradi-
tional recursive or pointwise approaches, this formulation combines spectral evaluation and
FFT-based transforms to achieve rapid convergence, ensuring both robustness and precision
in the manifold computation.

To verify the spectral accuracy of the computed parameterizations, we analyze the decay
of the coefficients an of PN obtained from the Newton iteration. For both the stable and
unstable manifolds, the magnitude of each coefficient is evaluated as ∥an∥∞, and its logarith-
mic scale log10(∥an∥∞) is plotted against the mode index n. The resulting coefficient profiles,
shown in the center and right panels of Figure 12 for a period-5 orbit of Table B (cf. Tbl. 1),
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Figure 11. Local (left) and global (right) stable (blue) and unstable (red)
manifolds for a period-2 orbit for Table B (cf. Tbl. 1). The global manifolds
were computed with 4 iterates of the fundamental domain and N = 60.

exhibit a rapid exponential decay of the coefficients, reaching values of order 10−16 by the
truncation index N . This confirms that the spectral representation PN (z) =

∑N
n=0 anz

n

provides a highly accurate analytic approximation of the local manifolds within the domain
of convergence of the parameterization.

Figure 12. (Left) Computed global stable and unstable manifolds for one
point of the period-5 orbit of Table B (cf. Tbl. 1). (Center, right) Logarithmic
decay of the infinity norm of Taylor coefficients ∥an∥∞ for the local unstable
and stable manifolds, respectively. Computations performed using N = 60
and 5 iterates of the fundamental domain.

Another key advantage of our approach is that it does not stop at the linear tangent
eigenvector chart, but by increasing the truncation order N of the expansion of PN (z), one
can capture the nonlinear deformation of the invariant manifold at larger amplitude. In
particular, while the leading term a1 corresponds to the linear eigenvector scaling, the higher
coefficients an with n ≥ 2 encode the curvature, folding and higher-order geometry of the
manifold. By systematically computing and monitoring these coefficients, our implementation
allows the eigenvector to be scaled to increasingly large magnitudes and hence captures local
nonlinear behavior of the manifold near the periodic orbit, see Figures 13-14 for a visual
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illustration of this behavior. In both figures, increasing N captures more nonlinear geometry
of the manifolds, with scale parameters scaleu and scales (see Appendix A.2 for definitions)
adjusted accordingly to control the extent of the parameterization from the periodic orbit.

Figure 13. Computed local stable and unstable manifolds for the same
period-5 orbit from Figure 12 with varying polynomial order N . (Left)
N = 60, scaleu = 0.21, scales = 0.2. (Center) N = 100, scaleu = 0.26,
scales = 0.26. (Right) N = 180, scaleu = 0.32, scales = 0.293; transverse
intersection occur even for the local manifolds.

To assess the robustness of our numerical methods, we systematically increase the pertur-
bation amplitude applied to the coefficients in Table C (cf. Tbl. 1). Specifically, we multiply
all coefficients by a factor of 3.5, representing an extreme perturbation far beyond the nom-
inal parameter regime. In this strongly perturbed case, the phase space reveals extensive
chaotic behavior: iterates densely populate the entire accessible domain in the (θ, r) plane,
forming a nearly uniform cloud of points that obscures much of the underlying structure. The
chaotic sea extends throughout the region 0 ≤ θ ≤ 1 and −0.5 ≤ r ≤ 0.5, with particularly
dense regions near r ≈ ±0.5 where iterates exhibit wild oscillations. Despite this extreme
perturbation—a 250% increase over the nominal values—we successfully compute the stable
and unstable manifolds of the hyperbolic periodic-2 orbits located near (θ, r) ≈ (0.25, 0) and
(0.75, 0). The successful resolution of these invariant manifolds under such severe perturba-
tion, where the system dynamics have deteriorated into an almost completely chaotic state,
demonstrates the remarkable effectiveness of our computational approach even as it operates
near the boundary of numerical feasibility.

5.2. Results for billiards. Here we concentrate on observations in terms of what our man-
ifolds indicate about the billiard tables. In Appendix A, we have listed all of the periodic
orbits found for the five tables. For example, for Billiard Tables A and B, we found a total
of seven periodic orbits and manifolds, with periods 2, 3, 5, 10, and 30, with a similar scope
in all other cases. In Figures 2–4, we give an overview of all of our computations of invariant
manifolds of Tables A–E listed in (2) and Tbl. 1.

In all of the manifolds we computed, either already in the local manifold, or with a small
number of iterates, we see transverse intersection of the stable and unstable manifolds of
the periodic orbits, implying chaos. The manifolds are trapped inside the connected chaotic
region containing the original periodic orbit, wrapping around to avoid the islands, such as
the period-2 manifolds wrapping around the two main islands in Figure 12 (left), the period-5
manifolds wrapping around a small pair of islands in Figure 14, and the period-10 manifolds
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Figure 14. Computed local stable and unstable manifolds for the period-10
orbit for Table C (cf. Tbl. 1) with varying polynomial order N . (Left) N = 60,
scaleu = 0.34, scales = 0.34. (Right) N = 200, scaleu = 0.51, scales = 0.51;
transverse intersections occur even for the local manifolds.

wrapping around two star-shape pieces consisting of twelve islands. The larger eccentricity
cases have the same behavior, but all the islands are squeezed into a smaller space, meaning
that it is harder to observe.

The resulting manifolds and homoclinic tangle beautifully align with the chaotic regions
computed using the weighted Birkhoff average. Each set of manifolds and their intersections
fills up the entire connected chaotic sea that contains it, giving good agreement between
these two methods. This is already somewhat clear in Figures 2-4, although we had kept
the number of iterations rather small to avoid overcrowding. It is much more obvious in
Figure 15, where we show only one set of manifolds and allow the number of iterations of the
local manifolds to be ten.

We are certainly not the first to observe that these maps bear a striking resemblance
to the behavior of the Chirikov standard map. In the perturbed case (positive parameter
for the Chirikov standard map), they both have elliptic islands, along with small chaotic
regions, which are filled with homoclinic tangles of hyperbolic periodic orbits. For a strictly
convex billiard table, if the boundary map B is parameterized by arclength, then the billiard
map is symplectic [Mei92]. Though we do not assume arclength parameterization, since
the frequency is independent of the parameterization, we can conclude from this that the
frequency of the rotational tori increases as r increases, as we can observe from the figures of
the phase space.

We note that there are a few key differences. The Chirikov standard map has large elliptic
period-one islands, whereas here the lowest period possible is two. For the Chirikov standard
map, there is a famous parameter value for which all rotational orbits break up [SM20]. In the
billiards case, no perturbation breaks up all rotational orbits. In particular, for every table
with a C6 smooth strictly convex boundary, there exist “whispering gallery” orbits [Laz73,
Dou82]. Finally, the Chirikov standard map is entire, whereas billiard maps can only be
continued to a finite thickness strip of the complex plane. Of particular interest is how well
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Figure 15. (Left) Computed global stable and unstable manifolds for a
period-2 orbit for Table E (cf. Tbl. 1), N = 40, scaleu = 0.52, scales = 0.48
and 10 iterations of the fundamental domain. (Right) Zoomed in plot at one
of the period-2 points (θ, r) = (0.5, 0) to clearly discern chaotic behavior in
that particular region.

we can see homoclinic tangle within the chaotic region, such as the Cantor set type behavior
of the manifolds, and how well it illustrates in this context the results of the λ-lemma.

The λ–lemma describes a fundamental geometric mechanism by which images of disks
(or arcs) transverse to a stable (resp. unstable) manifold are stretched and asymptotically
aligned with the unstable (resp. stable) manifold under forward (resp. backward) iteration
of the dynamics; informally, a small transverse disk is “carried along” and accumulates onto
the invariant manifold while its tangent directions converge to the tangent bundle of that
manifold. This statement is a classical ingredient in hyperbolic dynamics and its ramifications
for homoclinic and heteroclinic behavior are well documented (see, [Rob98, CFJ20]).

Numerically, the mechanism predicted by the λ–lemma is captured here in two comple-
mentary ways. First, the high-order parameterizations PN (z) provide accurate local charts
(disks) transverse to the periodic orbit together with reliable approximations of their tan-
gent bundles: the leading coefficient a1 recovers the tangent eigenvector while the higher
coefficients an≥2 encode the local nonlinear deformation. Second, by iterating the computed
local chart under the map F (or its inverse) and monitoring both pointwise images and the
evolution of tangent information, we observe the characteristic stretching, alignment and
accumulation described by the λ–lemma. Practically, the method’s spectral accuracy (expo-
nential coefficient decay to machine precision) and the Newton method applied ensure that
these iterated images remain within the radius of analyticity of the parameterization and that
the observed alignment is not a numerical artifact. Thus, by combining high-order spectral
charts with controlled iteration in the fundamental domain, our implementation reproduces
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the geometric content of the λ–lemma in a numerically verifiable way. A visualization of this
phenomena can be seen in Figure 15 for a period-2 orbit of Table E (cf. Tbl. 1).

6. Conclusions and future plans

In this paper, we have developed methods for computing billiard iteration for billiard tables
with smooth convex boundaries. We have then a variety of powerful dynamical tools to such
maps. We used the weighted-Birkhoff average to distinguish between chaos and quasiperiodic
orbits, at the same time as computing the frequency of the quasiperiodic orbits. We then
used the method of multiple-shooting to find periodic orbits for the billiard map. While this
method would find arbitrary periodic orbits, we selected the hyperbolic periodic orbits. We
then used the parameterization method to compute the local stable and unstable manifolds
for the periodic orbits. This use of the parameterization method is novel, in that the billiard
map is fully implicit. Therefore, in order to find the coefficients Taylor series approximation
of the manifolds, we continued our billiard map analytically into the complex plane, allowing
us to compute a Fourier series with the same coefficients as the Taylor series. Finally, we are
able to recover global manifolds, up to a chosen number of iterations.

In addition to the computational novelty of this setting, the application to billiards is itself
of great interest. Previous results on homoclinic tangles for billiard maps have concentrated
on the singular limit as the perturbation approaches the ellipse, showing that there are
exponentially small angles of intersection of the manifolds. In contrast, we are interested in
homoclinic tangles for billiard tables which are non-limiting perturbations from the ellipse.

One of the advantages of the parameterization method for computing manifolds is that
in addition to giving high accuracy approximations, the method can be used for computer
assisted proofs. Not just local manifolds, but also a finite number of iterations of these local
manifolds can be rigorously validated. In future work, we plan to validate our manifolds.
Since the existence of transverse homoclinic points implies chaos, such a validation will lead
to a rigorous validation of chaos for perturbed elliptic billiard maps.

The numerical algorithms described in this work have been implemented in MATLAB and
are available as open-source code at https://github.com/efleurantin2103/Billiards,
enabling reproduction of all computational results presented here.
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Appendix A. Computational Parameters and Technical Details

This appendix provides the parameters used to compute the global stable and unstable manifolds. It also gives a technical
modification for our numerical method for finding an initial guess for f .

A.1. Modification to find our initial guess. We now describe our second technical modification to our method for computing
the intitial guess in order to perform Newton’s method to find the billiard iterate f(θ, r). To make sure that the initial guess is
always well defined, we consider v−1, the previous direction of v, and use the ve that is the reflection of v−1 on the elliptical
table.
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Figure 16. The reflection vector v for our table might not point into the
interior of the associated elliptical table. To make sure it is always well defined,
we use ve in finding the guess (θ̂e, r̂e).

A.2. We now present the parameters and values of the periodic orbits seen in Figures 2–4 in a series of data Tables, one for each
period. More specifically, each data Table corresponds to orbits of a specific period and references the billiard tables in the main
text where these orbits are analyzed. The parameter r represents the radial coordinate, θ denotes the parameter describing
the point on the boundary of the billiard table, and scaleu and scales are the scaling factors applied to the unstable and
stable eigenvectors, respectively, in the parameterization method. (These were labeled s and u respectively in the theoretical
discussion in Section 4.5.) The variable N indicates the order of the polynomial approximation, while iterations refer to the
number of iterates M used in the computational scheme. These parameters were carefully chosen to ensure convergence and
accuracy of the computed invariant manifolds associated with each periodic orbit.

Period 2 r θ scaleu scales Iterations N
Table A 0.0000 0.5000 0.48 0.46 6 60
Table B 0.0 0.5 0.45 0.43 5 60
Table C 0.0 0.5 0.32 0.32 6 60
Table D 0.0 0.5 0.12 0.1 2 10
Table E 0.0 0.5 0.12 0.12 2 10

Period 3 r θ scaleu scales Iterations N
Table A 0.5333 0.8534 0.25 0.25 10 60
Table A -0.5333 0.8534 0.25 0.25 10 60
Table B 0.5328 0.3348 0.27 0.27 7 60
Table B -0.5328 0.3348 0.27 0.27 7 60
Table C 0.4454 0.5 0.28 0.28 6 60
Table C -0.4454 0.5 0.28 0.28 6 60

Period 4 r θ scaleu scales Iterations N
Table C 0.7078 0 0.2 0.2 8 60
Table C -0.7334 0.2152 0.2 0.2 8 60
Table D 0.5 0 0.114 0.114 8 35
Table D -0.8923 0.2216 0.114 0.114 8 35
Table E 0.89 0.22 0.14 0.115 3 25
Table E -0.89 0.22 0.14 0.115 3 25

Table 2. Numerical parameters for the orbits of periods 2, 3, and 4. The
value N is the order of the polynomial approximation given in (14), Iterations
is the number M of iterates in (21), and scales and scaleu are the scalings of
the eigenvectors in the parameterization method defined in Definitions 4.3
and 4.4.

Appendix B. Numerical manipulation of power series

Consider a power series

P (σ) =

∞∑
n=0

anσ
n
,

with an ∈ R (or C), and let g : C → C be an analytic function. We seek the power series coefficients of

(g ◦ P )(σ) =

∞∑
n=0

bnσ
n
.

These are given explicitly by the Faa da Bruno formula (multivariate generalization of the Leibnitz rule). This however leads
to exponential complexity, and we consider alternatives.
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Period 5 r θ scaleu scales Iterations N
Table A 0.2585 0.4308 0.29 0.29 11 60
Table A -0.2585 0.4308 0.29 0.29 11 60
Table B 0.2641 0.4223 0.21 0.2 10 60
Table B -0.2641 0.4223 0.21 0.2 10 60
Table C 0.7695 0.5 0.17 0.17 25 60
Table C -0.7695 0.5 0.17 0.17 25 60
Table D 0.75 0.44 0.125 0.123 10 30
Table D -0.75 0.44 0.125 0.123 10 30
Table E 0.7 0.46 0.125 0.123 7 25
Table E -0.7 0.46 0.125 0.123 7 25

Period 10 r θ scaleu scales Iterations N
Table A -0.3283 0.701 0.39 0.39 10 60
Table B -0.1746 0.3767 0.46 0.48 4 60
Table C 0.1653 0.122 0.34 0.34 8 60
Table D 0 0.3802 0.7 0.7 20 60
Table E -0.4106 0.1275 0.65 0.65 20 60

Period 30 r θ scaleu scales Iterations N
Table A 0.1667 0.5103 0.15 0.15 20 60
Table A -0.1667 0.4897 0.15 0.15 20 60
Table B 0.4877 0.5 0.15 0.15 30 60
Table B -0.4877 0.5 0.15 0.15 30 60

Table 3. Numerical parameters for the orbits of periods 5, 10, and 30.

B.1. Polynomial case. A common situation is that g is polynomial, in which case explicit recursive formulas for the coeffi-
cients of integer powers of P are worked out using the Cauchy product. For example we have that

(22) P (σ)
2
=

∞∑
n=0

(
n∑

k=0

an−kak

)
σ
n
,

and that

P (σ)
3
=

∞∑
n=0

 n∑
k=0

k∑
j=0

an−kak−jaj

σ
n
.

In these cases

bn =

n∑
k=0

an−kak, and bn =

n∑
k=0

k∑
j=0

an−kak−jaj ,

respectively. Formulas for higher order powers generalize in an obvious way. Therefore Cauchy products are sufficient for
working out the power series coefficients for g ◦ P in the polynomial case.

B.2. D-finite functions: differential algebra. If g is non-polynomial, but elementary (sometimes referred to as D-finite),
then the coefficients of g ◦ P are often found by combining the fact that the chain rule turns composition into multiplication
with the Cauchy product. For example, suppose g(z) = ez . We write

Q(σ) =

∞∑
n=0

bnσ
n

= g(P (σ)) = e
P (σ)

,

to denote the unknown power series of the composition and have that

Q
′
(σ) =

∞∑
n=0

(n + 1)bn+1σ
n

= g
′
(P (σ))P

′
(σ) = e

P (σ)
P

′
(σ),

which is

Q
′
(σ) = Q(σ)P

′
(σ).

Expressing this last expression in terms of power series and calling on the Cauchy product, we have that

∞∑
n=0

(n + 1)bn+1σ
n

=

( ∞∑
n=0

bnσ
n

)( ∞∑
n=0

(n + 1)an+1σ
n

)

=

∞∑
n=0

((k + 1)bn−kak+1)σ
n
.

Matching like powers of σn, yields the recursive expression for the power series coefficients of g ◦ P given by

bn+1 =
1

n + 1

n∑
k=0

(k + 1)bn−kak+1, n ≥ 0,
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with
b0 = e

a0 .

Using this differential-algebraic framework, we find that the power series coefficients of g ◦ P are no more difficult to compute
in this transcendental case than they are in the quadratic case.

B.3. Remarks on the literature. This idea illustrated in the previous section is sometimes referred to as automatic differ-
entiation for power series, polynomial recast, or polynomial embedding, and it is sufficient for many problems with reasonably
complicated nonlinearities. An important general reference is Chapter 4.6 of the second volume of Knuth’s the Art of Computer
Programming [Knu98]. See also [JZ05] for explicit recursion relations for many elementary functions. Indeed, the reference
just cited combines automatic differentiation for power series with a state-of-the-art parser as part of a powerful C++ software
library called TAYLOR, and suggests that the boundary between simple and complex nonlinearities is fluid, when approached
with the right tools. We refer also to the papers [FGJ25, GJJCZ25] where more recent enhancements and applications of the
TAYLOR package are discussed. Further extension of these ideas to multivariable power series is discussed at length in Chapter
2.3 of [HCF+18].

This said, there may be (depending on one’s tolerance for complexity) problems where explicit formulas for g are either too
much to hope for, or are more complicated than one wishes consider (especially if one is unwilling to adopt special purpose
software). For example, Poincaré sections for ODEs and billiard maps studied in the present work approach this boundary. For
such maps, we have ready access only to numerical procedures that compute the values g (and its derivatives) at points. In this
case, interpolation is a useful tool for determining the power series coefficients of f ◦ P , and when the functions are analytic,
the interpolation can be carried out via the discrete Fourier transform (DFT). An excellent reference for this material is the
book of [BH95].

B.4. Composition of power series via the DFT. Suppose that P : R → Rd, and g : Rd → R are real analytic, g(P (σ)) =
Q(σ), whose power series we approximate with the polynomial interpolant

Q
N
(σ) =

N∑
n=0

b̄nσ
n
.

The coefficients b̄n ≈ bn, 0 ≤ n ≤ N of the interpolant are determined by the values of Q at any (N + 1) distinct points, and
we choose values equidistributed on the unit circle in C with the first equal to one.

More precisely, define the N + 1 grid points

σk = e
2πik/(N+1)

, 0 ≤ k ≤ N.

and evaluate the composition on this mesh to obtain

Q
N
(σk) =

N∑
n=0

b̄nσ
n
k ≈ g(P (σk))

(23)

for 0 ≤ k ≤ N . Letting ω = e
2πi
N+1 , the bn are approximated by b̄n solving the linear system

1 1 1 · · · 1

1 ω1 ω2
1 · · · ωN

1

.

.

.
.
.
.

.

.

.
. . .

.

.

.

1 ωN ω2
N · · · ωN

N




b̄0
b̄1
b̄2
.
.
.

b̄N

 =


g(P (σ0))
g(P (σ1))
g(P (σ2))

.

.

.
g(P (σN ))


Remark B.1 (Analytic continuation). In this the step, we see that computing f(P (σk)) requires evaluating the real analytic
function P on complex inputs. This assumes that we are able to analytically continue P to the unit disk in C. Moreover, since
the analytic continuation of P is complex valued, we have to evaluate the real analytic function g for complex values as well.
Again, this may require analytic continuation of g.

Let

V =


1 1 1 · · · 1

1 ω1 ω2
1 · · · ωN

1

.

.

.
.
.
.

.

.

.
. . .

.

.

.

1 ωN ω2
N · · · ωN

N

 ,

Observe that V is invertible with

V
−1

=
1

N + 1


1 1 1 · · · 1

1 ω−1
1 ω−2

1 · · · ω−N
1

.

.

.
.
.
.

.

.

.
. . .

.

.

.

1 ω−1
N ω−2

N · · · ω−N
N

 .

These are the well known DFT matrices. Since we have an explicit inverse, solving the linear system determining the coefficients
of the composition is reduced to matrix-vector multiplication. Moreover, when N is large, this matrix-vector multiplication is
accelerated using the Fast Fourier Transform (FFT).

When P itself is a polynomial (as will be the case in our Newton procedure) we write

P (σ) =
N∑

n=0

anσ
n
,
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and have that evaluation of P at the interpolation points σk is expressed as

P (σk) =
N∑

n=0

anσ
n
k .

That is 
1 1 1 · · · 1

1 ω1 ω2
1 · · · ωN

1

.

.

.
.
.
.

.

.

.
. . .

.

.

.

1 ωN ω2
N · · · ωN

N




a0

a1

a2

.

.

.
aN

 =


(P (q0))
(P (q1))
(P (q2))

.

.

.
(P (qN ))


Let pn = P (qk) for 0 ≤ k ≤ N and write

p =


p1

.

.

.
pN

 , a =


a1

.

.

.
aN

 and b =


b̄1
.
.
.

b̄N

 .

Given the coefficients a of a polynomial P , the procedure for approximating the series coefficients of the composition is as
follows:

• Compute p via
V a = p.

This step is actually known as the DFT.
• Compute the numbers fk = f(pk), 0 ≤ k ≤ N . Let

f =


f̄1
.
.
.

f̄N

 .

• Compute

b = V
−1

f .

This step is actually known as the inverse discrete Fourier transform (IDFT).

The components of b are the approximate Taylor coefficients of the composition f ◦ P .

B.5. Multiplication matrix for power series. In the context of a Newton procedure, we often have to solve equations like

(24) Q(σ)P (σ) = g(σ),

where Q and g are given truncated power series: that is, polynomials. (The equation is an oversimplification, but it will make
the necessary point). While this equation can be solved by recursion, it is also amiable to numerical linear algebra.

To see this, let

a =


a0

.

.

.
aN

 , and g =


g0
.
.
.

gN

 ,

denote the vectors of known polynomial coefficients, and

b =


b0
.
.
.

bN

 ,

denote the unknown coefficients of P (the quotient of g and Q).
Since this equation is linear in P , there is a matrix representing the action of Q on P . Applying the formula of Equation

(22) to the standard basis vectors leads a representation of the action of the Cauchy product on the coefficient vector for P
given by

Q · P =



a0 0 0 . . . 0
a1 a0 0 . . . 0
a2 a1 a0 . . . 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.

aN aN−1 aN−2

.

.

. a0




b0
b1
b2
.
.
.

bN


Let

(25) CauchyMat(a) =



a0 0 0 . . . 0
a1 a0 0 . . . 0
a2 a1 a0 . . . 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.

aN aN−1 aN−2

.

.

. a0


.
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We can solve for the unknown coefficients b of P (σ) in Equation (24) by solving the (lower triangular) linear system

CauchyMat(a)b = g.
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[CFJ20] Maciej J Capiński, Emmanuel Fleurantin, and JD James. Computer assisted proofs of two-
dimensional attracting invariant tori for odes. Discrete & Continuous Dynamical Systems: Series
A, 40(12), 2020.

[CM06] Nikolai Chernov and Roberto Markarian. Chaotic billiards. American Mathematical Society, 2006.



38 BISHOP ET AL.

[Dat17] George Datseris. DynamicalBilliards.jl. The Journal of Open Source Software, 2(19), 2017.
[dCHSL22] Diogo Ricardo da Costa, Matheus Hansen, Mário Roberto Silva, and Edson D. Leonel. Tangent

method and some dynamical properties of an oval-like billiard. International Journal of Bifurca-
tion and Chaos, 32(04), Mar 2022.

[DHF19] George Datseris, Lukas Hupe, and Ragnar Fleischmann. Estimating Lyapunov exponents in bil-
liards. Chaos: An Interdisciplinary Journal of Nonlinear Science, 29(9), Sep 2019.

[DHN03] T Damour, M Henneaux, and H Nicolai. Cosmological billiards. Classical and Quantum Gravity,
20(9), Apr 2003.

[Dou82] R. Douady. Applications du théorème des tores invariantes. 1982.
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